FLORIDA INTERNATIONAL UNIVERSITY
 COLLEGE OF ENGINEERING AND COMPUTING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EEL 3110L-CIRCUITS LAB

SIXTH ACTIVITY Impedance, Phase Shift, and Filter
Please do the computer simulations before or after the lab.
(it's recommended that you finish it before).

1- Set up the following R-C circuits.

$v_{\text {in }}(t)=V_{m} \sin (\omega t)$ volts
$\mathrm{R}>220 \Omega$
$\mathrm{C} \geq 0.1 \mu \mathrm{~F}$
$\mathrm{V}_{\mathrm{m}} \geq 150 \mathrm{mV}$

Measure and make plots of $v_{i n}(t)$ and $v_{c}(t)$ on the same graph as well measure and tabulate phase shift between $v_{i n}(t)$ and $v_{c}(t)$ for the given conditions:
a) $\omega=\frac{1}{R C}$
b) $\omega=\frac{1}{2 R C}$
c) $\omega=\frac{1}{10 R C}$
d) $\omega=\frac{2}{R C}$
e) $\omega=\frac{10}{R C}$
Tips: Pick a value for R and C , then change ω according to the conditions
Briefly explain and comment your results

2- Introduction to filter.
Set up the following circuits while selecting R, L, and C freely.

Sweep the frequency for different ranges from 100 Hz till 20 kHz , observe Vo vs ω.
For example: $100 \mathrm{~Hz}-1 \mathrm{kHz}, 1 \mathrm{kHz}-10 \mathrm{kHz}, 10 \mathrm{kHz}-20 \mathrm{kHz}$, etc.
Classify each filter (L.P., H.P., B.P., B.S., etc.)
***Note: You can use Bode Plot of MyDAQ to sweep the frequency for as much as 20 kHz
Briefly explain and comment your results.

Write a brief summary of today activities. Remember to keep your records and own comments in your lab notebook.

